matefisica
martes, 29 de octubre de 2013
martes, 3 de julio de 2012
lunes, 2 de julio de 2012
Función matemática
Saltar a: navegación,
búsqueda
No debe confundirse con Función (informática).
Una función vista como una «caja negra», que transforma los valores u objetos de «entrada» en los valores u objetos de «salida»
De manera más abstracta, el concepto general de función, aplicación o mapeo se refiere en matemáticas a una regla que asigna a cada elemento de un primer conjunto un único elemento de un segundo conjunto. Por ejemplo, cada número entero posee un único cuadrado, que resulta ser un número natural (incluyendo el cero):
| ... | −2 → +4, | −1 → +1, | ±0 → ±0, | |
| +1 → +1, | +2 → +4, | +3 → +9, | ... |
| ..., | Estación → E, | Museo → M, | Arroyo → A, | Rosa → R, | Avión → A, | ... |
La manera habitual de denotar una función f es:
- f: A → B
- a → f(a),
- f: Z → N
- k → k2, o sencillamente f(k) = k2;
- g: V → A
- p → Inicial de p;
Una función puede representarse de diversas formas: mediante el citado algoritmo para obtener la imagen de cada elemento, mediante una tabla de valores que empareje cada valor de la variable independiente con su imagen —como las mostradas arriba—, o como una gráfica que dé una imagen de la función.
Historia
El simbolo f(x) fue utilizado por primera vez por Leonhard Euler, en su obra Commentarii de San petersburgo en 1736 2 3 4 .
Inicialmente, una función se identificaba a efectos prácticos con una expresión analítica que permitía calcular sus valores. Sin embargo, esta definición tenía algunas limitaciones: expresiones distintas pueden arrojar los mismos valores, y no todas las «dependencias» entre dos cantidades pueden expresarse de esta manera. En 1837 Dirichlet propuso la definición moderna de función numérica como una correspondencia cualquiera entre dos conjuntos de números, que asocia a cada número en el primer conjunto un único número del segundo.
La intuición sobre el concepto de función también evolucionó. Inicialmente la dependencia entre dos cantidades se imaginaba como un proceso físico, de modo que su expresión algebraica capturaba la ley física que correspondía a este. La tendencia a una mayor abstracción se vio reforzada a medida que se encontraron ejemplos de funciones sin expresión analítica o representación geométrica sencillas, o sin relación con ningún fenómeno natural; y por los ejemplos «patológicos» como funciones continuas sin derivada en ningún punto.
Durante el siglo XIX Julius Wilhelm Richard Dedekind (1831-1916), Karl Weierstrass (1815-1897), Georg Cantor (1845-1918), partiendo de un estudio profundo de los números reales, desarrollaron la teoría de funciones, siendo esta teoría independiente del sistema de numeración empleado.[cita requerida]
Con el desarrollo de la teoría de conjuntos, en los siglos XIX y XX surgió la definición actual de función, como una correspondencia entre dos conjuntos de objetos cualesquiera, no necesariamente numéricos.5 También se asoció con otros conceptos vinculados como el de relación binaria.
Introducción
Un móvil que se desplaza con una aceleración de 0,66 m/s2 recorre una distancia d que está en función del tiempo transcurrido t. Se dice que d es la variable dependiente de t, la variable independiente. Estas magnitudes, calculadas a priori o medidas en un experimento, pueden consignarse de varias maneras. (Se supone que el cuerpo parte en un instante en el que se conviene que el tiempo es t = 0 s.)
Los valores de las variables pueden recogerse en una tabla, anotando la distancia recorrida d en un cierto instante t, para varios momentos distinos:
| Tiempo t (s) | Distancia d (m) |
|---|---|
| 0,0 | 0,0 |
| 0,5 | 0,1 |
| 1,0 | 0,3 |
| 1,5 | 0,7 |
| 2,0 | 1,3 |
| 2,5 | 2,0 |
- d = 0,33 × t2,
Una función también puede reflejar la relación de una variable dependiente con varias variables independientes. Si el cuerpo del ejemplo se mueve con una aceleración constante pero indeterminada a, la distancia recorrida es una función entonces de a y t; en particular, d = a·t2/2. Las funciones también se utilizan para expresar la dependencia entre otros objetos cualesquiera, no solo los números. Por ejemplo, existe una función que a cada polígono le asigna su número de lados; o una función que a cada día de la semana le asigna el siguiente:
- Lunes → Martes, Martes → Miércoles,..., Domingo → Lunes
Definición
La definición general de función hace referencia a la dependencia entre los elementos de dos conjuntos dados.Dados dos conjuntos A y B, una función (también aplicación o mapeo) entre ellos es una asociación6 f que a cada elemento de A le asigna un único elemento de B. |
- Ejemplos
- Todos los números reales tienen un cubo, por lo que existe la función «cubo» que a cada número en el dominio R le asigna su cubo en el codominio R.
- Exceptuando al 0, todos los números reales tienen un único inverso. Existe entonces la función «inverso» cuyo dominio son los números reales no nulos R \ {0}, y con codominio R.
- Cada mamífero conocido se clasifica en un género, como Homo, Sus o Loxodonta. Existe por tanto una función «clasificación en géneros» que asigna a cada mamífero de la colección M = {mamíferos conocidos} su género. El codominio de «clasificación en géneros» es la colección G = {géneros de Mammalia}.
- Existe una función «área» que a cada triángulo del plano (en la colección T de todos ellos, su dominio), le asigna su área, un número real, luego su codominio es R.
- En unas elecciones en las que cada votante pueda emitir un único voto, existe una función «voto» que asigna a cada elector el partido que elija. En la imagen se muestra un conjunto de electores E y un conjunto de partidos P, y una función entre ellos.
Funciones con múltiples variables
Existen muchos ejemplos de funciones que «necesitan dos valores» para ser calculadas, como la función «tiempo de viaje» T, que viene dada por el cociente entre la distancia d y la velocidad media v: cada pareja de números reales positivos (una distancia y una velocidad) tiene asociada un número real positivo (el tiempo de viaje). Por tanto, una función puede tener dos (o más) variables independientes.La noción de función de múltiples variables independientes no necesita de una definición específica separada de la de función «ordinaria». La generalidad de la definición anterior, en la que se contempla que el dominio sea un conjunto de objetos matemáticos arbitrarios, permite omitir la especificación de dos (o más) conjuntos de variables independientes, A1 y A2, por ejemplo. En lugar de ello, el dominio se toma como el conjunto de las parejas (a1, a2), con primera componente en A1 y segunda componente en A2. Este conjunto se denomina el producto cartesiano de A1 y A2, y se denota por A1 × A2.
De este modo las dos variables independientes quedan reunidas en un solo objeto. Por ejemplo, en el caso de la función T, su dominio es el conjunto R+ × R+, el conjunto de parejas de números reales positivos. En el caso de más de dos variables, la definición es la misma, usando un conjunto ordenado de múltiples objetos, (a1, ..., an), una n-tupla. También el caso de múltiples variables dependientes se contempla de esta manera. Por ejemplo, una función división puede tomar dos números naturales como valores de entrada (dividendo y divisor) y arrojar dos números naturales como valores de salida (cociente y resto). Se dice entonces que esta función tiene como dominio y codominio el conjunto N × N.
Notación. Nomenclatura
La notación habitual para presentar una función f con dominio A y codominio B es:También se dice que f es una función «de A a B» o «entre A y B». El dominio de una función f se denota también por dom(f), D(f), Df, etc. Por f(a) se resume la operación o regla que permite obtener el elemento de B asociado a un cierto a ∈ A, denominado la imagen de a.6
- Ejemplos
- La función «cubo» puede denotarse ahora como f: R → R, con f(x) = x3 para cada número real x.
- La función «inverso» es g: R \ {0} → R, con g(x) = 1/x para cada x real y no nulo.
- La función «clasificación en géneros» puede escribirse como γ: M → G, donde γ(m) = Género de m, para cada mamífero conocido m.
- La función «área» se puede denotar como A: T → R, y entonces A(t) = Área de t = B · H/2, donde t es un triángulo del plano, B su base, y H su altura.
- La función «voto» se puede escribir como v: E → P, donde v(a) = Partido que a votó, para cada votante a.
Existen además terminologías diversas en distintas ramas de las matemáticas para referirse a funciones con determinados dominios y codominios. Algunas bastante extendidas son:
- Función real. f : R → R
- Función compleja. f : C → C
- Función escalar. f : Rn → R
- Función vectorial. f : Rn → Rm
Imagen e imagen inversa
Artículo principal: Conjunto imagen.
Dado un conjunto de votantes y un conjunto de posible partidos, en unas elecciones, el sentido del voto de cada individuo se puede visualizar como una función.
Dada una función f : A → B, el elemento de B que corresponde a un cierto elemento a del dominio A se denomina la imagen de a, f(a). |
La imagen de una función f es un subconjunto del codominio de la misma, pero no son necesariamente iguales: pueden existir elementos en el codominio que no son la imagen de ningún elemento del dominio, es decir, que no tienen preimagen.
La imagen inversa (también anti-imagen o preimagen) de un elemento b del codominio B es el conjunto de elementos del dominio A que tienen a b por imagen. Se denota por f−1(b). |
- Ejemplos
- La imagen de la función cubo f es todo R, ya que todo número real posee una raíz cúbica real. En particular, las raíces cúbicas de los números positivos (negativos) son positivas (negativas), por lo que se tiene, por ejemplo, f−1(R+) = R+.
- El recorrido de la función inverso g no es igual a su codominio, ya que no hay ningún número real x cuyo inverso sea 0, 1/x = 0.
- Para la función «clasificación en géneros» γ se tiene:
- γ(Perro) = Canis, y γ−1(Canis) = {Perro, coyote, chacal,...}.
- Como el área es siempre un número positivo, el recorrido de la función área A es R+.
- En el diagrama puede comprobarse que la imagen de la función voto v no coincide con el codominio, ya que el partido C no recibió ningún voto. Sin embargo puede verse que, por ejemplo, v−1(Partido A) tiene 2 elementos.
Igualdad de funciones
Dadas dos funciones, para que sean idénticas han de tener el mismo dominio y codominio, y asignar la misma imagen a cada elemento del dominio:Dadas dos funciones f : A → B y g : C → D, son iguales o idénticas si se cumple: |
Funciones inyectivas, suprayectivas y biyectivas
La imagen inversa de un elemento del codominio puede ser vacía, o contener varios objetos del dominio. Esto da lugar a la siguiente clasificación:| Funciones | Inyectiva | No inyectiva | ||
| Sobreyectiva |
|
|||
| No sobreyectiva |
|
Cuando una función tiene ambas propiedades a la vez, se dice que es una biyección entre ambos conjuntos:
Una función f : A → B se dice biyectiva si es inyectiva y suprayectiva. |
- Ejemplos.
- La función cubo f: R → R es biyectiva. Es inyectiva porque dos números reales que tienen el mismo cubo son idénticos, y es suprayectiva porque Im(f) = R.
- La función «inverso» g: R \ {0} → R es inyectiva, ya que el inverso de cada número real no nulo es único (1/x = 1/y implica necesariamente que x = y). Sin embargo no es suprayectiva, dado que Im(g) = R \ {0}.
- La función de clasificación de mamíferos γ: M → G no es inyectiva, ya que hay mamíferos distintos en el mismo género (por ejemplo, γ(Yak) = γ(Toro) = Bos). Sin embargo sí es suprayectiva, ya que en cada género de mamíferos hay clasificada al menos una especie de mamíferos.
- La función área A: T → R no es sobreyectiva, ya que Im(A) = R+. Tampoco es inyectiva, ya que pueden construirse con facilidad triángulos distintos con el mismo área.
- En la imagen pueden verse varios ejemplos de funciones entre un conjunto de pinceles P y un conjunto de caras C.
Álgebra de funciones
Con las funciones puede realizarse una operación de composición con propiedades similares a las de la multiplicación.Composición de funciones
Artículo principal: Composición de funciones.
Dadas dos funciones, bajo ciertas condiciones podemos usar los
valores de salida de una de ellas como valores de entrada para la otra.,
creando una nueva función.Sean dos funciones f : A → B y g : C → D, tales que el recorrido de la primera esté contenido en el dominio de la segunda, Im(f) ⊆ C. Entonces puede formarse la composición de g con f, la función g ∘ f : A → D que a cada a en el dominio A le asocia el elemento (g ∘ f)(a) = g(f(a)). |
La condición Im(f) ⊆ C asegura precisamente que este segundo paso se pueda llevar a cabo.
- Ejemplos
- La imagen de la función «inverso» g es R \ {0} —puesto que todo número real no nulo es el inverso de otro—, y por tanto está contenido en el dominio de la función cubo f, que es R. La composición f ∘ g: R \ {0} → R actúa entonces como f(g(x)) = f(1/x) = (1/x)3 = 1/x3.
- Dadas las funciones reales h1: R → R y h2: R → R dadas por h1(x) = x2 y h2(x) = x + 1, puede tomarse la composición en ambos órdenes, h1 ∘ h2 y h2 ∘ h1. Sin embargo, son funciones distintas, ya que:
- (h1 ∘ h2)(x) = h1(h2(x)) = h1(x + 1) = (x + 1)2 = x2 + 2x + 1, y
- (h2 ∘ h1)(x) = h2(h1(x)) = h2(x2) = x2 + 1
- La función γ que clasifica los mamíferos en géneros puede componerse con la función ω: G → Or que clasifica los géneros de mamíferos en órdenes —que forman el conjunto Or—. La función ω ∘ γ asigna a cada mamífero su orden:
- (ω ∘ γ)(Humano) = ω(Homo) = Primate, (ω ∘ γ)(Guanaco) = ω(Lama) = Artiodactyla
Función identidad
Artículo principal: Función identidad.
En cualquier conjunto puede definirse una función identidad, que
teniendo como dominio y codominio al propio conjunto, asocia cada
elemento consigo mismo.Dado un conjunto A, la función identidad de A es la función idA : A → A que a cada a ∈ A le asocia idA(a) = a. |
Dada una función cualquiera f : A → B se tiene: |
Función inversa
Artículo principal: Función inversa.
Una función puede tener inversa, es decir, otra función que al componerla con ella resulte en la identidad, del mismo modo que un número multiplicado por su inverso da 1.Dada una función f : A → B, se dice que g : B → A es la inversa o recíproca de f si se cumple: |
Toda función biyectiva f es invertible, y su inversa f−1 es biyectiva a su vez. Recíprocamente, toda función invertible f es biyectiva. |
- Ejemplos.
- La función «exponencial» h : R → R, que asocia a cada número real su exponencial, h(x) = ex, no es invertible, ya que no es suprayectiva: ningún número negativo pertenece a la imagen de h.
- Existe una función que calcula el cambio entre dos divisas. En el caso del cambio de rupias a quetzales (las monedas de la India y Guatemala), la conversión está dada (en 2011) por:
Q(r) = 0,15 × r
Esta función de cambio tiene inversa, la conversión recíproca de quetzales a rupias:
R(q) = 6,65 × q - La función cubo f(x) = x3 es invertible, ya que podemos definir la función inversa mediante la raíz cúbica, f−1(x) = 3√x.
- La función de clasificación en géneros γ : M → G no es invertible, ya que no es inyectiva, y para cada género pueden existir varios mamíferos clasificados en él.
- La función que asigna a cada día de la semana su siguiente tiene por inversa la función que asigna a cada día de la semana su antecesor:
- Lunes → Domingo, Martes → Lunes,..., Domingo → Lunes
Restricción y extensión
Artículo principal: Restricción de una función.
Dadas dos funciones f : A → B y g : C → D, de forma que el dominio de g sea un subconjunto del dominio de f, C ⊆ A, y cuyas imágenes coinciden en este subconjunto: |
Representación de funciones
Artículo principal: Representación gráfica de una función.
Las funciones se pueden presentar de distintas maneras:- usando una relación matemática descrita mediante una expresión matemática: ecuaciones de la forma
. Cuando la relación es funcional, es decir satisface la segunda condición de la definición de función, se puede definir una función que se dice definida por la relación, A menos que se indique lo contrario, se supone en tales casos que el dominio es el mayor posible (respecto a inclusión) y que el codominio son todos los Reales. El dominio seleccionado se llama el dominio natural, de la función.
- Ejemplo: y=x+2. Dominio natural es todos los reales.
- Ejemplo: "Para todo x, número entero, y vale x más dos unidades".
- Como tabulación: tabla que permite representar algunos valores discretos de la función.
- Ejemplo:
- Como pares ordenados: pares ordenados, muy usados en teoría de grafos.
- Ejemplo: A={(-2, 0),(-1, 1),(0, 2),(1, 3),... (x, x+2)}
- Como gráfica: gráfica que permite visualizar las tendencias en la función. Muy utilizada para las funciones continuas típicas del cálculo, aunque también las hay para funciones discretas.
- Ejemplo:
| 5 | X | |||||
| 4 | X | |||||
| 3 | X | |||||
| 2 | X | |||||
| 1 | X | |||||
| 0 | X | |||||
| y / x | -2 | -1 | 0 | 1 | 2 | 3 |
Definición formal
Las funciones pueden definirse en términos de otros objetos matemáticos, como los conjuntos y los pares ordenados. En particular, una función es un caso particular de relación binaria, luego su esta definición está basada en la que se adopte para las relaciones. En el enfoque «extensivo» se identifica una función con su gráfica:Una función es un conjunto f de pares ordenados tal que no contiene dos pares distintos con la misma primera componente: |
Una función es una terna de conjuntos f = (A, B, G(f)), el dominio, el codominio y el grafo de f, tales que: |
http://es.wikipedia.org/wiki/Funci%C3%B3n_lineal
lunes, 25 de junio de 2012
Ecuación
Saltar a: navegación,
búsqueda
El primer uso del signo igualdad, la ecuación equivale a la notación moderna 14x+15=71, tomado de The Whetstone of Witte de Robert Recorde (1557).
la variable
Se llama solución de una ecuación a cualquier valor individual de dichas variables que la satisfaga. Para el caso dado, la solución es:
Resolver una ecuación es encontrar su dominio solución, que es el conjunto de valores de las incógnitas para los cuales la igualdad se cumple. Todo problema matemático puede expresarse en forma de una o más ecuaciones; sin embargo no todas las ecuaciones tienen solución, ya que es posible que no exista ningún valor de la incógnita que haga cierta una igualdad dada. En ese caso, el conjunto de soluciones de la ecuación será vacío y decimos que la ecuación no es resoluble. De igual modo, puede tener un único valor, o varios, o incluso infinitos valores, siendo cada uno de ellos una solución particular de la ecuación. Si cualquier valor de la incógnita hace cumplir la igualdad (esto es, no existe ningún valor para el cual no se cumpla) la expresión se llama identidad.nota 2
Introducción
De manera más general, una ecuación tendrá la formadonde F, G son operadores y a, b pueden ser valores numéricos, variables o funciones (en este último caso tendremos una ecuación funcional). Por ejemplo, la ecuación real (donde las incógnitas están sobre los números reales):
tiene por soluciones o raíces el conjunto infinito de valores
Uso de ecuaciones
La ciencia utiliza ecuaciones para enunciar de forma precisa leyes; estas ecuaciones expresan relaciones entre variables. Así, en física, la ecuación de la dinámica de Newton relaciona las variables fuerza F, aceleración a y masa m: F = ma. Los valores que son solución de la ecuación anterior cumplen al primera ley de la mecánica de Newton. Por ejemplo, si establecemos una masa m = 1 Kg y una aceleración a = 1 m/s, la única solución de la ecuación es F = 1 Kg·m/s = 1 Newton, que es el único valor para la fuerza permitida por la ley.El campo de aplicación de las ecuaciones es inmenso, y por ello hay una gran cantidad de investigadores dedicados a su estudio.
Tipos de ecuaciones
Las ecuaciones pueden clasificarse según el tipo de operaciones necesarias para definirlas y según el conjunto de números sobre el que se busca la solución. Entre los tipos más frecuentes están:- Ecuaciones algebraicas
- Polinómicas o polinomiales
- De primer grado o lineales
- De segundo grado o cuadráticas
- Racionales, aquellas en las que uno o ambos miembros se expresan como un cociente de polinimios
- Ecuaciones trascendentes, cuando involucran funciones no polinómicas, como las trigonométricas, exponenciales, etc.
- Diofánticas o diofantinas
- Ecuaciones diferenciales
- Ecuaciones integrales
Definición general
Dada una aplicaciónEl estudio de las ecuaciones depende de las características de los conjuntos y la aplicación; por ejemplo, en el caso de las ecuaciones diferenciales, los elementos del conjunto
La definición que hemos dado incluye las ecuaciones de la forma
Conjunto de soluciones
Dada la ecuaciónEn la teoría de ecuaciones diferenciales, no se trata sólo de averiguar la expresión explícita de las soluciones, sino determinar si una ecuación determinada tiene solución y esta es única. Otro caso en los que se investiga la existencia y unicidad de soluciones es en los sistemas de ecuaciones lineales.
Casos particulares
Una ecuación diofántica es aquella cuya solución sólo puede ser un número entero, es decir, en este casoEn un sistema de ecuaciones lineales, el conjunto
Existencia de soluciones
En muchos casos -por ejemplo en las ecuaciones diferenciales-, una de las cuestiones más importantes es determinar si existe alguna solución, es decir demostrar que el conjunto de soluciones no es el conjunto vacío. Uno de los métodos más corrientes para lograrlo consiste en aprovechar que el conjuntoEcuación polinómica
Una ecuación polinómica o polinomial es una igualdad entre dos polinomios. Por ejemplo:Forma canónica
Realizando una misma serie de transformaciones en ambos miembros de una ecuación, puede conseguirse que uno de ellos se reduzca a cero. Si además se ordenan los términos según los exponentes a los que se encuentran elevadas las incógnitas, de mayor a menor, se obtiene una expresión denominada forma canónica de la ecuación. Frecuentemente suele estudiarse las ecuaciones polinómicas a partir de su forma canónica, es decir aquella cuyo primer miembro es un polinomio y cuyo segundo miembro es cero.En el ejemplo dado, sumando 2xy y restando 5 en ambos miembros, y luego ordenando, obtenemos:
Grado
Se denomina grado de una ecuación polinomial al mayor exponente al que se encuentran elevadas las incógnitas. Por ejemploEs una ecuación de tercer grado porque la variable x se encuentra elevada al cubo en el mayor de los casos.
Las ecuaciones polinómicas de grado n de una sola variable sobre los números reales o complejos, pueden resolverse por el método de los radicales cuando n < 5 (ya que en esos casos el grupo de Galois asociado a las raíces de la ecuación es soluble). La solución de la ecuación de segundo grado es conocida desde la antigüedad; las ecuaciones de tercer y cuarto grado se conocen desde los siglos XV y XVI, y usan el método de radicales. La solución de la ecuación de quinto grado no puede hacerse mediante el método de radicales, aunque puede escribirse en términos de la función theta de Jacobi.
Ecuación de primer grado
Se dice que una ecuación polinomial es de primer grado cuando la variable (aquí representada por la letra x) no está elevada a ninguna potencia, es decir que su exponente es 1.
Las ecuaciones de primer grado tienen la forma canónica:
Su solución es sencilla:
Resolución de ecuaciones de primer grado
Las ecuaciones polinómicas de primer grado se resuelven en tres pasos: transposición, simplificación y despeje, desarrollados a continuación mediante un ejemplo.Dada la ecuación:
Transposición
Primero se agrupan todos los monomios que incluyen la incógnita x en uno de los miembros de la ecuación, normalmente en el izquierdo; y todos los términos independientes (los que no tienen x) en el otro miembro. Podemos hacerlo teniendo en cuenta que:Si sumamos o restamos un mismo monomio en los dos miembros, la igualdad no varía. |
La ecuación quedará entonces así:
Simplificación
El siguiente paso es convertir la ecuación en otra equivalente más simple y corta.Realizamos la simplificación del primer miembro:
Y simplificamos el segundo miembro:
La ecuación simplificada será:
Despeje
Ahora es cuando llegamos al objetivo final: que la incógnita quede aislada en un miembro de la igualdad. Para lo cual recordamos que:Si multiplicamos o dividimos ambos miembros por un mismo número, la igualdad no varía. |
Lo que estamos haciendo en realidad es dividiendo ambos términos entre 5. Por lo tanto, el término que está multiplicado por 5, al dividirse entre 5 se anulan uno con el otro, desaparece multiplicando, mientras que en el otro lado vemos como dividimos entre 5 y el 5 permanece, aparece dividiendo, como si hubiera pasado de un lado a otro con una operación simétrica. Esta explicación con operaciones simétricas causa muchas confusiones a muchos estudiantes que pueden tener problemas para hallar la operación simétrica, por ejemplo no es evidente que 3x = y pueda despejarse por x = log3y. Por eso es importante recordar el principio fundamental por el que siempre que apliquemos una función inyectiva a ambos lados de una igualdad obtendremos otra igualdad.
En la ecuación debemos entonces pasar el número 95 al otro miembro y, como estaba multiplicando, lo hará dividiendo, sin cambiar de signo:
Resolvemos la fracción (numerador dividido entre denominador) en caso de que el resultado diera exacto; si diera decimal, simplificamos la fracción y ése es el resultado.
En la ecuación, vemos que el resultado de la fracción es decimal (525:95 = 5,5263157894737)
Por tanto, simplificando, la solución es:
Ejemplo de problema
Pongamos el siguiente problema: el número de canicas que tengo, más tres, es igual al doble de las canicas que tengo, menos dos. ¿Cuántas canicas tengo? El primer paso para resolver este problema es expresar el enunciado como una ecuación:La ecuación se podría leer así: El número de canicas que tengo, más tres que me dan, es igual al doble de mis canicas, quitándome dos.
El enunciado está expresado, pero no podemos ver claramente cuál es el valor de x; para ello se sigue este procedimiento: Primero se pasan todos los términos que dependen de x al primer miembro y los términos independientes al segundo. Para ello tenemos en cuenta que cualquier término que se cambia de miembro cambia también de signo. Así obtenemos:
ECUACION DE PRIMER GRADO CON DOS INCOGNITAS
http://www.youtube.com/watch?v=la1Rmj5hsIc&feature=related
Ecuación de segundo grado
Artículo principal: Ecuación de segundo grado.
Las ecuaciones polinómicas de segundo grado tienen la forma canónicaDonde a es el coeficiente del término cuadrático (aquel en que la incógnita está elevada a la potencia 2), b es el coeficiente del término lineal (el que tiene la incógnita sin exponentes, o sea que está elevada a la potencia 1), y c es el término independiente (el que no depende de la variable, o sea que está compuesto sólo por constantes o números) Todas las ecuaciones de segundo grado tienen dos soluciones, las cuales pueden coincidir. Cuando esta ecuación se plantea sobre
Obviamente la condición para que la ecuación tenga solución sobre los números reales
Operaciones admisibles en una ecuación
Frecuentemente en el tratamiento de ecuaciones con números reales o complejos es necesario simplificar, reagrupar o cambiar de forma la ecuación para poder resolverla más fácilmente. Se conoce que bajo ciertas operaciones el se mantiene la igualdad y el conjunto de soluciones no cambia aunque la forma de la ecuación sea diferente. Entre las operaciones de álgebra elemental que no alteran el conjunto de soluciones están están:- Sumar cualquier número a ambos lados de la ecuación.
- Restar cualquier número a ambos lados de la ecuación.
- Dividir entre un número real diferente de cero ambos lados de la ecuación.
- Multiplicar por cualquier número ambos lados de la ecuación.
- Si f inyectiva se puede aplicar a cada uno de los dos miembros de la ecuación.
- Simplificar dividiendo factores comunes presentes en ambos lados de una ecuación. Si estos factores contienen no sólo números sino también variables esta operación debe aplicarse con cuidado porque el conjunto de soluciones puede verse reducido. Por ejemplo, la ecuación y·x = x tiene dos soluciones: y = 1 y x = 0. Si se dividen ambos lados entre "x" para simplifcarla se obtiene la ecuación y = 1, pero la segunda solución se ha perdido.
- Si se aplica una función no inyectiva a ambos lados de una ecuación, la ecuación resultante puede no tener un conjunto de soluciones más grande que la original.
Suscribirse a:
Comentarios (Atom)